SALVATORE A. FUSARI

Abstract [] Nitroglycerin in molded sublingual tablets volatilizes and undergoes intertablet migration. Consequently, tablets that are uniform when manufactured develop enough intertablet dose variation that they frequently fail the USP XVIII content uniformity test. Factors influencing volatilization and migration are discussed.

Keyphrases 🗌 Nitroglycerin tablets-stability, volatilization, and intertablet migration 🗌 Tablets, nitroglycerin-stability, volatilization, and intertablet migration 🗌 Content uniformity, nitroglycerin tablets-volatilization and intertablet migration

In recent years, a growing body of evidence has accumulated which shows that conventional nitroglycerin tablets lose potency if stored improperly (1-5). A little-known fact is that the stability of nitroglycerin tablets is complicated by the development of intertablet dose variation caused by the volatilization and subsequent intertablet migration of nitroglycerin¹. Tablets that are uniform when manufactured develop increased individual tablet variation upon storage, even when little potency loss is observed and even if the tablets are refrigerated. This seeming anomaly was observed in this laboratory, and supporting data are given here.

Banes (2) reported an almost total loss of nitroglycerin from tablets stored in blister packs; most of this nitroglycerin was recovered from the adhesive used to cement the blister pack laminate together. Earlier, at least one manufacturer² found that nitroglycerin tablets, dried on brown Kraft paper, transferred substantial amounts of nitroglycerin to the paper. The present author found that stuffing materials in contact with nitroglycerin tablets readily absorb varying amounts of nitroglycerin from the tablets.

Bell (6) examined 55 lots of nitroglycerin tablets from four different manufacturers. Ten individual tablets were assayed per lot. His results showed that 101 of the 550 tablets assayed fell outside of the USP XVI limits of 80-112%. Although Bell made no mention of instability, it is now clear that his data reinforce the finding in this article.

The observation that nitroglycerin readily migrates through the bottle space into cotton stuffing offered a possible explanation for the instability of sublingual nitroglycerin tablets. Consequently, this study was undertaken to define the nature of the problems associated with the instability of nitroglycerin tablets. This information would be fundamental to the development of methods for stabilizing the tablets through either modification of the immediate container or reformulation.

¹ During the remainder of this article, the term stability will encom-pass both potency loss and lack of content uniformity. ² Personal communication, Warner-Chilcott Laboratories.

Table I-Assay of Placebos and Tabletsº in Contact w	ith
Each Other at 25° for 1 Month	

	Average Assa —-of Label Placebos	
	Flacebos	Tablets
Placebos mixed will nitro- glycerin tablets	93.3	34.7
Placebos above nitroglycerin tablets	12.4	91.1
Placebos below nitroglycerin tablets	29 .1	90.1

° 600 mcg. (1/100 gr.).

EXPERIMENTAL

Assay Procedure-The assay procedure was an automated adaptation of the method of Bell (6). Previous experience showed that this method is stability indicating³. Tablets (0.3 mg.) were dissolved in 10 ml. of water in a glass-stoppered 50-ml. centrifuge tube; 0.4- and 0.6-mg. tablets required 15 and 20 ml. of water, respectively. The tubes were shaken vigorously initially and after two 5-min. intervals to ensure solution of the nitroglycerin. After solution was accomplished, the samples were placed in sample cups for the Sampler II using an Auto Analyzer⁴ set at a rate of 30 samples/ hr. At least 30 individual tablets were assayed per lot of product. Standards preceded and followed every 10 samples to allow close monitoring of the assay procedure. Calculations for each set of assays included the average, the range, and the standard deviation in order to facilitate comparisons among lots. The standard deviation was calculated, although normal distributions were probably not obtained due to large, irregular losses of nitroglycerin from the tablets. However, it serves as a convenient method for comparison.

Transfer of Nitroglycerin from Sublingual Tablets to Placebo Tablets—Placebo tablets were prepared using a rotary press⁶. The physical specifications for these tablets were as follows: 55-60mg. weight, 0.48-cm. (0.19-in.) diameter, 0.29-cm. (0.115-in.) thickness, flat-faced, and beveled-edge punches. These tablets were purposely made larger than commercial nitroglycerin tablets to permit ease of sorting for assay purposes.

Three separate experiments were performed to evaluate if drug migration would occur, and whether the position of the placebo relative to the nitroglycerin tablets in the container had any effect.

In each experiment, 25 placebo tablets and 50 600-mcg. (1/100-gr.) nitroglycerin tablets were placed in normal commercial bottles⁶ and allowed to stand at room temperature for 1 month. Four bottles were set up for each experiment. The results, which were obtained by one analyst and confirmed independently by another on a separate set of bottles, are shown in Table I.

Comparison of Content Uniformity at Time of Release and after Aging-All samples checked were in commercial bottles containing 100 tablets, and all had been stored at ambient room temperature. Sixty lots of tablets of various ages and dosage sizes were assayed. Fifty-six of these lots had already been marketed and four were new lots pending release. Comparisons of the "release" assays and aged assays are given in Tables II-IV.

Content Uniformity of Freshly Manufactured Lots-Four lots of newly manufactured 400-mcg. (1/150-gr.) tablets were assayed to

³ To be submitted for publication. ⁴ Technicon.

⁶ Stokes B-2. ⁶ Six-milliliter, round, amber bottle with screw cap containing an Excelloseal liner

Table II—Comparison of "Release" and "Aged" Assays of Nitroglycerin Tablets [600 mcg. (1/100 gr.)] with Ambient Room Temperature Storage

Average Assay at Time of Manufacture	Range of Assay	σ^a	Elapsed Time for "Aged" Assay, Months	Average Assay of 30 "Aged" Tablets	Range	σ
<u>.</u>	<u></u>		Passes			
101.8 (10)	93.3-109.0	4.5	14	95.0	75.5-122.1	9.8
101.1 (10)	96.6-109.2	3.5	14	100.3	78.5-116.1	11.0
102.4 (20)	96.7-109.3	3.8	13	98.2	77.0-121.1	13.4
103.1 (20)	89.4-115.0	5.1	12	97.9	83.2-123.9	8.7
111.4 (10)	101.1-116.8	4.2	11	96.3	84.1-114.9	6.7
106.1 (10)	98.3-111.9	3.9	8	98.0	78.7-120.3	9.0 8.4 9.3
103.6(10)	96.6-109.8	3.6	8	95.0	81.1-116.6	8.4
105.0 (10)	98.9-112.7	4.9	7	96.0	81.7-113.8	93
98.0 (10)	90.2-111.0	5.9	6	98.0	77.7-117.5	11.3
104.1 (10)	96.1-112.2	4.9	6	98.1	78.9-121.0	9.9
93.5 (10)	90.7-101.2	3.0	5	94.2	78.0-110.5	9.9 8.3
96.2 (10)	91.7-102.4	3.5	5	99.8	79.5-115.6	10.0
			\mathbf{Fails}^{b}			
100.6(10)	92.2-106.3	3.6	10	87.3	66.6-106.7	8.9
104.9 (10)	101.6-110.0	2.4	7	94.2	72.7-110.4	8.5

^a Standard deviation. ^b Refers to passing or failing the content uniformity test in USP XVIII prior to the allowance of one "flyer" in 30 tablets.

Table III—Comparison of "Release" and "A	ged" Assays of Nitroglycerin Tablets [400 mcg.	(1/150 gr.)] with Ambient Room
Temperature Storage		

Average Assay at Time of Manufacture	Range of Assay	σ	Elapsed Time for "Aged" Assay, Months	Average Assay of 30 "Aged" Tablets	Range	σ
····			Passes			
108.4 (40)	95.4-126.5	6.3	11	99.6	88.8-117.6	7.4
106.8 (10)	99.9-113.1	4.8	10	96.1	81.0-116.1	8.6
101.7 (10)	94.2-112.1	5.5	10	96.2	87.0-111.7	6.0
105.9 (10)	100.2-114.0	5.0	8	103.9	83.7-122.8	7.5
100.1 (10)	94.6-107.9	3.9	8	101.2	75.6-130.0	10.5 5.8
101.9 (10)	95.7-106.5	3.5	8	96.4	86.5-107.1	5.8
109.0 (10)	102.3-114.9	4.3	7	95.8	78.3-115.2	9.3
93.8 (10)	83.8-104.6	7.8	7	99.5	84.9-115.6	7.4
99.0 (10)	78.6-110.1	8.5	7	97.3	84.3-107.7	5.6
107.0 (10)	90.9-108.0	6.2	5 3 2 2	99.1	82.8-115.5	9.3 8.5
102.3	96.5-113.0	4.7	3	102.1	88.7-119.1	8.5
103.1 (10)	99.3-109.4	3.5	2	103.9	83.7-135.2	10.3
104.4 (10)	99.5-108.8	3.6	2	98.6	75.9-131.7	15.6
105.4 (10)	97.4-110.5	3.8	1	102.0	82.5-120.6	9.5
103.9 (10)	95.5-111.2	5.2 4.1	1	102.0 98.2	76.2-129.2 80.9-120.6	10.7 9.0
101.4 (10)	95.1-107.8	4.1	1	98.2	80.9-120.0	9.0
98.9 (30) 103.6 (30)	87.2-109.8 93.7-114.8	5.5 4.9				
102.8 (30)	95.5–111.1	4.9				
102.7 (30)	92.2-112.7	4.6				
102.7 (30)	92.2-112.7	4.0	F 2-11-			
06.0 (10)	00 2 110 0		Fails	07.2	70 6 104 7	0.7
95.9 (10)	90.3-110.8	6.6	11	97.3 101.1	72.5–124.7 74.3–120.4	9.7 10.7
105.3 (10) 108.9 (40)	99.3–109.6 99.5–116.9	4.2 4.5	8 7	102.0	74.3-120.4 72.2-121.9	10.7
108.9 (40)	99.3-110.9 96.1-108.2	3.8	7	102.0	69.0-123.8	13.5
104.7 (10)	98.6-111.9	3.6	5	95.0	53.1-121.4	13.9
105.4 (10)	100.1-109.5	3.3	5	96.6	71.4-119.3	13.5
102.8 (10)	97.9-112.8	4.4	5	91.6	65.9-113.9	11.2
102.9 (20)	96.5-113.0	3.8	4	95.3	68.7-131.9	16.6
102.9 (20)	96.7-107.1	3.4	3	99.5	62.5-131.0	15.0
103.8 (10)	103.7-109.8	3.8	3	97.7	59.4-135.3	15.8
99.3 (10)	90.3-109.5	4.9	2	92.1	66.3-115.2	11.7
101.7 (10)	98.2-104.8	2.4	1	101.9	72.3-113.6	11.2

show the manufacturing process capability and to establish a baseline for additional experimental work. The results are shown in Table V.

Effect of Room Temperature Storage for 1 Month with and without Rayon Stuffing and Wax Seals—The four new lots of nitroglycerin tablets described above were placed in containers for this experiment while the assays described in Table V were being performed. Tablets were put into 120 commercial bottles⁶. Sixty of the bottles were "stuffed" with rayon and the other half were not. After storage for 1 month at room temperature, 30 tablets from each set were reassayed (Table VI). Effect of Stuffing and Cap Liners at 37 and 45° for 1 Month— Tablets from Lot 345906 (Table V) were placed in amber glass bottles with screw caps. Seven different cap liners were used, both with and without a wax seal and without stuffing. Rayon, tissue, or cotton stuffing was used with each of the different cap liners in bottles without wax seals. The 136 bottles were stored at 37 and 45° for 1 month. At the end of this time, a bottle of each type was removed from storage and 30 tablets from each bottle were assayed individually (Table VII).

Comparison of Storage at Room and Refrigerator Temperatures--

Table IV—Comparison of "Release" and "Aged" Assays of Nitroglycerin Tablets [300 mcg. (1/200 gr.)] with Ambient Room Temperature Storage

verage Assay at Time of Manufacture	Range of Assay	σ	Elapsed Time for "Aged" Assay, Months	Average Assay of 30 "Aged" Tablets	Range	σ
			Passes			
100.7 (10)	92.0-105.1	5.0	9	93.3	77.6-108.6	6.6
105.9 (10)	98.5-113.8	5.1	8	94.2	77.7-129.2	11.4
102.8 (10)	97.3-111.7	5.0	7	95,6	76.9-112.2	8.3
103.1 (10)	98.5-108.8	4.7	7	94.7	81.8-120.1	11.1
104.5 (10)	100.6-109.4	2.4	7	99.4	79.9-128.4	12.5
106.3 (10)	102.5-112.0	3.2	4	104.1	80.2-128.2	13.0
102.6 (10)	96.4-107.7	3.8	3	95.3	84.9-104.9	6.3
			Fails			
100.9 (20)	89.1-111.2	6.2	11	75.2	39.6-91.0	11.8
93.8 (20)	83.3-102.5	3.6	10	88.5	71.3-105.3	8.1
103.6(10)	94.1-113.0	6.4	7	102.1	63.5-132.9	13.6
101.9 (10)	98.5-105.8	3.2	7	95.3	67.4-121.8	13.8
103.8 (10)	100.8-108.4	2.3	4	88.3	69.2-125.0	14.3
104.8 (10)	97.7-110.8	4.1	4	95.5	63.3-152.6	17.0
98.0 (10)	78.6-105.2	8.2	4	89.4	56.6-131.8	18.7

Table V—Assay of Freshly Manufactured NitroglycerinTablets [400 mcg. (1/150 gr.)]

Assay in Percent of Label Claim									
Lot Number	Average of 30 Tablets	Range of Assays	Standard Deviation						
345903	98.9	87.2-109.8	5.3						
345904	103.6	93.7-114.8	4.9						
345905	102.8	95.5-111.1	4.0						
345906	102.7	92.2-112.7	4.6						

Tablets in commercial packages were stored at 4, 25, 37, and 45° and at 37° and 85% relative humidity. Data accumulated for 600-, 400-, and 300-mcg. (1/100-, 1/150-, and 1/200-gr.) tablets at 4 and 25° (room temperature) are given in Table VIII for comparison.

Stability of Nitroglycerin Tablets [400 mcg. (1/150 gr.)] at 25, 37, and 45° at Monthly Intervals—After preliminary experiments showed that polyethylene terephthalate⁷ was a better cap liner than Excelloseal for nitroglycerin tablets, two lots of tablets were placed in commercial bottles with screw caps containing polyethylene terephthalate⁷ liners. Initial assay values were obtained and the bottles were then stored at 25, 37, and 45°. At monthly intervals, one bottle of each lot stored under each of the three conditions was removed and 30 tablets were assayed (Table IX).

RESULTS AND DISCUSSION

Until recently, analytical techniques did not lend themselves to large numbers of individual tablet assays of low drug dosage forms. This situation improved dramatically with Bell's (6) publication of an individual tablet assay and the advent of automated analytical methodology. A combination of these two techniques has enabled the present author to assay many individual tablets, both rapidly and accurately, thus avoiding the "leveling" effect obtained from composite assays. As a result, greater insight was gained concerning the causes of the instability of nitroglycerin tablets. The tremendous amount of work involved in both stability and formulation studies on nitroglycerin tablets would have been physically impossible without the use of an automated analytical system.

The results shown in Table I clearly demonstrate that nitroglycerin can and does migrate from tablet to tablet. The migration occurs because of the inherent volatility of nitroglycerin⁸ and must occur through the vapor phase. This migration is mediated by the stresses applied to the tablet by its immediate environment. Placebos that were physically intermixed with the nitroglycerin tablets re-

⁷ Mylar.

ceived the most transfer of nitroglycerin, while those striated either above or below the nitroglycerin tablets received the least (Table I and Figs. 1 and 2). Many of the placebos that were intermixed with the nitroglycerin tablets contained more nitroglycerin than a tablet containing 100% of the label claim; this is explained on the basis that there were one-half as many placebos as nitroglycerin tablets and that the placebos were approximately twice the size of the nitroglycerin tablets.

The fact that the placebos intermixed with the nitroglycerin tablets received the most nitroglycerin by migration indicates that soon after volatilization the nitroglycerin must be absorbed by some nearby receptor surface. If this were not so, it would be expected that all of the placebo tablets, regardless of position in the bottle, would reach the same nitroglycerin content. The fact that the placebos both above and below the nitroglycerin tablets received less nitroglycerin than the placebos intermixed with the nitroglycerin tablets is indicative of the small amount of travel that occurs once the nitroglycerin volatilizes. In some respects, this is analogous to the process of molecular distillation.

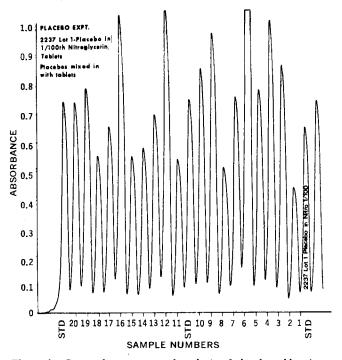


Figure 1—Curves from automated analysis of placebo tablets intermixed with 600-mcg. (1/100-gr.) nitroglycerin tablets.

^b The vapor pressure of nitroglycerin is 0.00026 mm. Hg at 20° (Merck Index).

Table VI—Nitroglycerin Tablets [400 mcg. (1/150 gr.)] with Room Temperature Storage for 1 Month in Commercial Bottles with Excelloseal Liner

Lot Number	Description	Average Assay of 30 Tablets	Range	Standard Deviation	Stuffing Table Equivalent
345903 345903 345903 345903 345903	No wax, no rayon No wax, with rayon ^a With wax, no rayon With wax, with rayon	91.0 100.6 91.6 96.3	65.6-115.7 75.2-126.5 61.4-123.3 76.9-111.3	13.0 12.2 16.2 9.5	0.36
345904 345904 345904 345904 345904	No wax, with rayon No wax, with rayon With wax, no rayon With wax, with rayon	97.5 97.5 94.9 98.2 99.2	67.6-129.4 69.5-127.3 85.6-118.1 83.1-120.5	15.3 12.8 9.3 10.9	0.73
345905 345905 345905 345905 345905	No wax, no rayon No wax, with rayon With wax, no rayon With wax, with rayon	94.8 96.9 97.4 96.3	52.5-133.1 62.2-115.6 64.3-123.2 61.5-123.9	19.9 13.9 14.5 13.3	0.76
345906 345906 345906 345906 345906	No wax, no rayon No wax, with rayon With wax, no rayon With wax, with rayon	95.3 99.7 97.4 97.5	61.1-124.9 65.8-138.1 73.8-120.1 75.8-118.9	16.4 16.6 11.4 10.1	0.56

^a This is the normal commercial package for the conventional tablets.

It could appear that migration occurred only because of the high concentration gradient that existed between the nitroglycerin and placebo tablets, and that migration would not occur if all tablets in a bottle contained nitroglycerin. However, the evidence presented in Tables II-IV on 60 lots of nitroglycerin tablets demonstrates that the latter premise is untenable. The data show that all lots passed the content uniformity test easily when they were first manufactured, but that the assay range spread considerably as these lots aged. It may be argued that when the lots were first assayed, only 10 tablets were assayed instead of 30, thus lessening the chances of noticing variability. However, since this occurred in about 60 lots, the chances of not seeing this variability should be slim indeed. It is to be noted that the trend is toward higher variability in the reassayed tablets. In spite of a general net loss in potency, the high values are frequently considerably higher than the high values in the starting tablets; the frequency of this occurrence

Table VII-Effect of Stuffing and Cap Liners on Nitroglycerin Tablets [400 mcg. ($(1/150 \text{ gr.})]^a$ with 1 Month of Storage at 37 and 45°
--	---

		37°				45°		
Description	Average Assay of 30 Tablets	Range	Standard Deviation	Stuffing Tablet Equiva- lent	Average Assay of 30 Tablets	Range	Standard Deviation	Stuffing Tablet Equiva- lent
No wax, Esterfoil With wax, Esterfoil Rayon, Esterfoil Tissue, Esterfoil Cotton, Esterfoil No wax, Tinfoil With wax, Tinfoil Rayon, Tinfoil Tissue, Tinfoil Cotton, Tinfoil No wax, wax vinyl With wax, wax vinyl Rayon, wax vinyl Tissue, wax vinyl	101.7 101.5 97.9 99.6 98.3 101.0 102.3 100.4 103.6 99.0 81.6 102.2 93.6 97.1	$\begin{array}{c} 89.8-122.1\\ 89.4-119.6\\ 80.5-113.6\\ 80.3-116.2\\ 83.7-117.4\\ 92.0-114.1\\ 90.2-123.6\\ 64.4-138.4\\ 83.5-131.9\\ 75.7-126.7\\ 28.8-104.1\\ 83.4-116.7\\ 54.6-128.4\\ 57.5-142.7\\ \end{array}$	7.4 8.2 8.5 8.7 8.8 6.7 8.5 17.3 10.6 10.6 22.0 7.9 17.2 18.9	2.3 2.1 6.8 3.3 2.8 9.4 2.8 1.9	93.4 95.3 101.5 102.0 97.9 101.0 97.5 94.4 93.9 90.4 88.8 87.7 92.0 94.6	$\begin{array}{c} 77, 9-109, 7\\ 77, 2-116, 3\\ 79, 5-129, 9\\ 60, 7-126, 5\\ 59, 6-124, 8\\ 86, 8-120, 3\\ 82, 6-123, 5\\ 70, 9-112, 2\\ 39, 2-128, 7\\ 52, 1-123, 9\\ 68, 6-107, 0\\ 39, 6-114, 8\\ 72, 6-115, 3\\ 31, 5-136, 7\\ \end{array}$	8.3 9.8 11.4 13.9 16.1 7.0 8.0 11.4 20.5 15.2 10.9 19.2 11.1 24.2	1.8 5.3 12.3 4.9 4.9 7.6
Cotton, wax vinyl No wax, with Mylar ⁶ With wax, Mylar Rayon, Mylar Tissue, Mylar Cotton, Mylar No wax, lubricated vinyl	94.4 102.1 99.9 94.0 101.6 91.7	65.6-114.7 74.4-117.0 84.6-115.7 64.6-113.0 53.8-146.4 58.7-117.1	13.2 10.5 8.7 14.9 21.1 	10.1 	88.2 102.3 99.8 102.0 97.5 96.0 77.2	56.5-109.6 92.0-123.4 82.3-110.8 63.1-134.6 45.1-126.7 50.0-118.0 29.6-108.7	16.1 6.5 6.9 17.2 19.5 14.1 25.8	28.9 <u> </u>
With wax, lubricated vinyl Rayon, lubricated vinyl Tissue, lubricated vinyl Cotton, lubricated vinyl No wax, Excelloseal With wax, Excelloseal Tissue, Excelloseal Cotton, Excelloseal No wax, Aclar ^c With wax, Aclar Rayon, Aclar Tissue, Aclar	90.1 97.4 100.6 91.8 90.0 93.9 104.8 96.4 101.0 103.2 101.7 101.8 104.0	$\begin{array}{c} 46.5-114.8\\ 51.1-131.3\\ 48.5-147.4\\ 55.5-113.0\\ 50.5-122.9\\ 52.6-129.8\\ 54.6-132.9\\ 74.9-144.1\\ 60.2-131.5\\ 80.3-116.5\\ 88.7-119.7\\ 68.7-149.3\\ 48.4-129.8\\ 74.3-132.2\\ \end{array}$	17.8 21.1 20.7 15.3 18.0 18.5 18.0 18.8 15.6 7.9 8.2 17.6 19.4 16.0	1.7 1.4 2.3 	72.0 90.2 91.6 86.0 91.6 89.6 104.1 97.7 96.7 99.2 100.9 94.7 97.2 99.0	19.9-108.3 $55.2-132.9$ $50.1-118.0$ $40.4-134.0$ $40.4-117.6$ $57.4-116.5$ $80.5-129.5$ $45.3-140.1$ $61.9-121.6$ $87.7-115.0$ $86.4-117.6$ $64.3-126.6$ $70.7-127.5$ $68.4-127.0$	25.5 17.9 17.9 22.5 16.4 15.7 14.6 18.8 14.8 7.7 7.7 13.9 15.0 16.5	

^a Lot 345906, initial assays: average, 102.7% label claim; range, 92.2-112.7% label claim; and σ , 4.6. ^b Polyethylene terephthalate. ^c Aclar is a fluorohalocarbon. The results above may be weighted too heavily toward failure when stuffing is introduced. The Aclar seals were available only on bottles larger than the bottles used for the other studies so that more stuffing was used in the Aclar sealed bottles.

Table VIII—Comparison at Room Tem	perature and 4° of Conventional	Nitroglycerin Tablets ^a
-----------------------------------	---------------------------------	------------------------------------

			-Initial Assay	,		oom Temperatur	e	<u> </u>	4°	
Release Date	Size of Tablet, mcg. (gr.)	Average Assay, Percent of Labeled Claim	Range of Assay, Percent of Labeled Claim	Stand- ard Devia- tion, σ	Average Assay, Percent of Labeled Claim	Range of Assay, Percent of Labeled Claim	Stand- ard Deviation, σ	Average Assay, Percent of Labeled Claim	Range of Assay, Percent of Labeled Claim	Stand- ard Devia- tion, σ
5-67	600 (1/100)	103.2	b		100.5	79.0-122.9	11.7	100.9	81.4-125.7	11.4
9-68	600 (1/100)	102.0			111.5	90.2-145.0	11.5	108.9	90.3-128.3	10.0
1-70	600 (1/100)	99.3	86.1-109.0	6.9	98.3	80.4-118.9	9.2	95.3	65.5-123.7	16.8
2-70	600 (1/100)	101.9	96.9-106.6	3.2	95.6	64.0-118.5	12.5	97 .3	74.4-114.5	10.1
6-67	400 (1/150)	103.9			98.5	76.4-116.5	9.8	106.9	91.5-125.8	8.9
9-68	400 (1/150)	99.7	_		99.9	76.7-121.0	10.1	109.1	94.9-143.0	11.0
5-69	400 (1/150)	103.5			101.1	90.0-123.7	7.7	100.6	84.9-133.7	8.5
12-69	400 (1/150)	97.5	93.0-106.0	4.0	92.6	56.8-130.5	15.2	99.8	64.8-135.0	18.0
1-70	400 (1/150)	100.1	96.0-104.0	2.1	94.6	74.3-120.0	10.3	95.9	77.2-116.7	8.2
9-68	300 (1/200)	101.0			95.1	72.2-137.1	12.7	104.0	67.7-164.3	19.8
12-69	300 (1/200)	100.0	94.6-104.1	3.0	96.0	66.9-138.1	14.9	97.0	63.2-120.5	13.4
1-70	300 (1/200)	98.1	94.1-102.9	2.8	95.0	63.8-140.3	14.5	100.9	80.3-129.3	12.3

^a Assays performed 2/17-2/18, 1972. ^b Only average assay is given; individual tablet assays were not being performed until 8-69. However, the ranges shown are typical of our manufacturing capability so that they may be assumed for those lots where ranges are not given. All assays shown that do not indicate assay ranges for individual tablets were done by either the IR or phenoldisulfonic acid procedures of USP XVII and USP XVIII. The automated version of Bell's (6) assay was used for all other samples.

Table IX—Stability of Nitroglycerin Tablets [400 mcg. (1/150 gr.)] in Glass Bottles with Screw Cap and Polyethylene Terephthalate Liner at 25, 37, and 45°

	Elapsed Time, Months		Lot 1		Lot 2			
Temperature		Average Assay, Percent of Labeled Claim	Range of Assays, Percent of Labeled Claim	Relative Standard Deviation, %	Average Assay, Percent of Labeled Claim	Range of Assays, Percent of Labeled Claim	Relative Standard Deviation, %	
25°	0	103.8	94.9-113.5	3.9	104.7	98.5-111.2	3.1	
	1	102.0	76.6-122.1	12.7	103.3	64.7-129.8	14.1	
	2	102.1	84.9-131.2	10.6	102.2	83.7-119.6	7.9	
	3	100.3	74.5-120.7	12.4	102.9	84.9-121.0	9.4	
	4	101.2	79.5-128.6	12.6	99.9	80.5-131.0	11.7	
	5	101.4	85.9-123.2	10.7	103.1	79.2-127.9	10.7	
	6	101.1	81.6-127.0	12.5	104.9	79.7-132.7	14.3	
37°	0	103.8	94.9-113.5	3.9	104.7	98.5-111.2	3.1	
	1	107.6	72.0-147.2	15.6	101.8	69.5-143.3	17.4	
	2	100.0	73.1-130.7	12.9	101.8	86.1-117.0	8.3	
	3	99.8	76.7-137.6	13.9	103.7	86.7-113.5	7.2	
	4	96.4	76.2-127.6	10.0	99.9	73.5-124.7	12.9	
	5	100.1	76.5-142.4	16.7	104.6	73.8-137.1	16.4	
45°	0	103.8	74.9-113.5	3.9	104.7	98.5-111.2	3.1	
	1	102.3	71.8-142.9	13.9	101.6	74.6-124.3	12.7	
	2	97.2	77.5-116.1	10,7	101.8	86.1-117.0	8.3	
	3	100.4	76.5-119.4	11.7	97.7	73.7-140.9	12.4	
	4	97.3	69.1-120.4	10.4	96.1	62.7-113.9	13.7	
	5	98.2	79.0-133.1	10.9	99.7	78.7-119.6	10.0	

does not appear to be based on chance. The assays performed on the freshly manufactured lots show one value at 126.5 and all other values (about 800) are below 116.9 (one at 116.9, another at 116.8, and the next high at 115). This finding is in solid contrast with the values obtained after the tablets were manufactured, packaged, and on the market; the high value is 152.6 and there are many tablets assaying greater than 130. Thus, it appears that these higher tablets are picking up nitroglycerin from other tablets.

The absolute age of these tablets is not the sole factor involved in determining whether a product passes or fails content uniformity. The passing tablets ranged in age from 1 to 14 months, whereas some of the tablets that failed were 1–2 months old.

The behavior of the tablets on reassay led to the belief that the problem in this laboratory with nitroglycerin tablets was probably industry wide. Assay of other commercial nitroglycerin tablets revealed that this was indeed true. Analysis of Bell's data (6) on 55 lots of tablets reinforces these observations. These lots encompassed tablets of 600, 400, 300, 250, and 150 mcg. (1/100, 1/150, 1/200, 1/250, and 1/400 gr.) made by four different manufacturers. Bell performed 10 individual tablet assays per lot. Calculation of the percent relative standard deviation for each lot⁹ (Table X) gave values that were certainly much higher than the

manufacturing process capability. Our manufacturing process usually gives a percent relative standard deviation below 4.5; the values on Bell's samples ranged from 5.4 to 21.8. Forty-one of the 55 values are greater than 7 and 29 are greater than 10. Of the 550 tablets assayed by Bell, 101 fell outside of the USP XVI limits of an average value of 80-112%; 78 of these showed excessive dosage and 23 insufficient nitroglycerin. The high percent relative standard deviations, coupled with the large number of tablets showing excess dosage, give presumptive evidence¹⁰ that migration of nitroglycerin has occurred.

Table V shows the assay results obtained on four newly manufactured lots of nitroglycerin tablets. The close similarity of these lots indicates a pretty uniform manufacturing procedure. Of the

Ten tablets (a small number of tablets for this calculation, but it does give a basis for comparison).
 ¹⁰ Presumptive only because the range and relative standard devia-

¹⁰ Presumptive only because the range and relative standard deviations of these lots when manufactured were not known. However, since these tablets had to meet weight variation and average potency requirements, it would be unlikely that 78 of 550 tablets would be out of range on the high side.

Table X—Range and Relative St	andard Deviation Calculat	ted from Bell's (6) Data

Range of Lot, mg. × 100	Average Assay, mg.	Range of Lot, Percent of Labeled Claim	Average Assay, Percent of Labeled Claim	Relative Standard Deviation, Percent	Range of Lot, mg. × 100	Average Assay, mg.	Range of Lot, Percent of Labeled Claim	Average Assay, Percent of Labeled Claim	Relative Standard Deviation, Percent	
600-mcg. (1/100-gr.) Tablets					300-mcg. (1/200-gr.) Tablets					
55-80 51-75 50-70 54-76 50-69 50-75 58-86 50-87 57-78 48-73 52-74 63-78 58-71 59-71	$\begin{array}{c} 0.64\\ 0.62\\ 0.62\\ 0.62\\ 0.61\\ 0.65\\ 0.69\\ 0.69\\ 0.65\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\end{array}$	85-123 78-115 77-108 83-117 77-106 77-115 89-132 77-134 88-120 74-112 80-114 97-120 89-109 91-109	98 95 95 94 100 106 106 100 102 102 102 102 102 102	11.7 12.1 11.3 12.7 11.1 12.2 14.7 10.4 11.0 9.4 7.4 6.0 5.7	25-40 23-36 22-39 21-41 24-48 25-29 25-29 25-30 25-31 25-30 26-39 26-41 26-39	$\begin{array}{c} 0.32\\ 0.29\\ 0.30\\ 0.30\\ 0.33\\ 0.27\\ 0.27\\ 0.27\\ 0.28\\ 0.28\\ 0.33\\ 0.37\\ 0.34\\ 0.34 \end{array}$	78-125 72-113 69-122 66-128 75-150 78-91 78-91 78-94 78-94 78-94 81-122 81-128 81-128 81-122	100 91 94 94 103 84 84 88 88 103 116 106	13.6 13.9 20.2 21.2 21.8 5.7 5.7 5.7 5.4 5.6 12.6 11.2 17.1 11.9	
66-75	0.70	102–115	108	5.4	29 –41	0.35	91-128	109	13.7	
400-mcg. (1/150-gr.) Tablets 34–45 0.38 79–105 88 8.5					250-mcg. (1/250-gr.) Tablets					
38-46 31-45 35-49 32-49 38-50 35-50 37-47	0.41 0.39 0.42 0.39 0.45 0.43 0.43	88-107 72-105 81-114 74-114 88-116 81116 86-109	95 91 98 91 105 100 100	6.9 10.9 10.0 12.0 7.9 11.8 8.0	21-27 21-26 21-25 22-27 21-28	0.24 0.24 0.24 0.24 0.24 0.24	81-104 81-100 81-96 85-104 81-108	92 92 92 92 92 92	7.0 5.8 6.4 7.2 9.9	
42-50	0.46	98-116	107	7.4		150-mcg. (1/400-gr.) Tablets				
39-47 36-51 39-49 42-50 33-49 40-49	0.43 0.44 0.46 0.46 0.43 0.46	91-109 84-119 91-114 98-117 77-114 93-114	100 102 107 107 100 107	7.4 10.4 7.2 5.8 10.5 6.0	12-21 16-21 14-19 14-21 13-21	0.18 0.18 0.17 0.18 0.18	75–131 100–131 88–119 88–131 81–131	113 113 106 113 113	14.5 10.9 9.5 13.6 15.7	

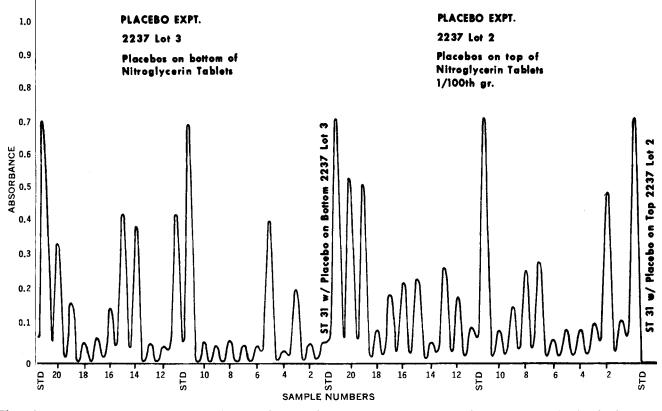


Figure 2—Curves from automated analysis of placebo tablets. Key: left, placebos on bottom of nitroglycerin tablets; and right, placebos on top of nitroglycerin tablets.

Vol. 62, No. 1, January 1973 127

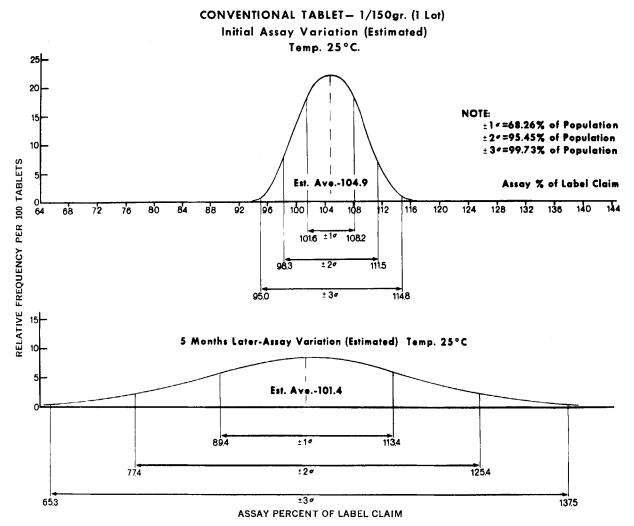


Figure 3—Distribution curves for conventional sublingual tablets at the time of manufacture and after being packaged for 5-7 months.

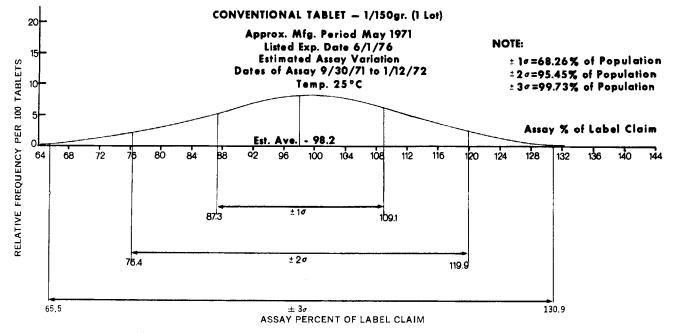


Figure 4—Distribution curves for conventional sublingual tablets at the time of manufacture and after being packaged for 5-7 months.

128 🗌 Journal of Pharmaceutical Sciences

120 tablets tested, no tablet assayed lower than 87.2 nor greater than 114.8% of labeled claim. Since the lots had just been manufactured at the time the tablets (Tables II-IV) were assayed, it was decided to test the effects of certain variables (e.g., time, temperature, stuffing materials, and cap liners) on the stability of nitroglycerin tablets.

Table VI shows the effect of storing these tablets at room temperature for 1 month in commercial bottles⁶ using the modifications shown in the table. In all cases, the range of assays for the tablets widened considerably, the lows being lower and the highs being considerably higher in spite of a general net loss in potency. This result can only be explained on the basis that nitroglycerin volatilized and migrated from tablet to tablet. No other explanation is possible based on the average assay, range, and standard deviation of the original tablets.

The effects of using different cap liners and stuffing materials at 37 and 45° for 1 month are shown in Table VII. These accelerated temperature conditions were chosen to screen quickly the effectiveness of cap liners and stuffing materials. Once again, the range of assays widened considerably in spite of a general net loss in potency. The high values are frequently considerably higher than the high value obtained on the initial assay of Lot 345906 or, for that matter, on any of the three other lots made at the same time (Table V). In fact, many of the samples fail content uniformity requirements.

A large amount of nitroglycerin was absorbed by the cotton stuffing. Cotton is still used by pharmacists in repackaging operations; this practice must be discouraged for nitroglycerin tablets. Additionally, it should be noted that of the seven liners evaluated, only four (Esterfoil, tinfoil, polyethylene terephthalate⁷, and a fluorohalo-carbon film¹¹) offered any protection to the nitroglycerin tablets for even short periods of time. Although these liners are imperfect, they certainly are superior to the wax vinyl, lubricated vinyl, and Excelloseal liners. The latter cap liners seemed to accelerate the instability; it should be emphasized that the stability of no other known drug dosage form seems to be so susceptible to the proper choice of cap liner and stuffing material.

With most unstable drugs, the stability of refrigerated samples is usually better than for samples stored at room or higher temperatures. This is not true with nitroglycerin tablets (Table VIII). The data show that refrigeration does not prevent the development of intertablet variation in conventional sublingual nitroglycerin tablets. This is additional evidence for the complex nature of the instability of sublingual nitroglycerin tablets.

Table IX shows the stability of two additional newly manufactured lots of nitroglycerin tablets at 25, 37, and 45° assayed at monthly intervals. Marked intertablet variability devloped within 1 month after the samples were stored. The loss of content uniformity in these tablets is important, because it means a patient cannot be assured a uniform, predictable dose with this type of tablet unless something can be done to stabilize the nitroglycerin content. Figures 3 and 4 show distribution curves for conventional sublingual tablets at the time of manufacture and after being packaged for 5–7 months. The spread in range of assay results is dramatic when one considers the close range of assay values in the freshly manufactured lots.

The foregoing data and discussion demonstrate that sublingual nitroglycerin tablets are unstable due to volatilization and intertablet migration of nitroglycerin. The inherent low volatility of nitroglycerin and the manufacturing process for making molded

¹¹ Aclar, Allied Chemical Corp.

sublingual tablets are the predisposing factors leading to instability. During the manufacture of molded sublingual tablets, a 10% nitroglycerin β -lactose adsorbate¹³ is blended with a lactosesucrose mixture. This mixture is then moistened and blended with a mixture of alcohol and water. The resultant tablet mixture is then molded and the tablets so prepared are air dried. While the tablets are air drying, the nitroglycerin is brought to the surface of the tablet by the evaporation of the alcohol and water. This situation is analogous to the development and elution of a solute zone during chromatographic development. Since the tablets are air dried in batches and in contact with each other, it is quite conceivable that the surface concentrations of nitroglycerin are erratic, creating concentration gradients among the tablets. These gradients are in addition to all other stresses inherent in the immediate tablet environment including the stuffing, cap liner, imperfect vapor seal, and temperature.

When the nitroglycerin is brought close to, or at the surface of, the tablet, the stage is set for loss and/or migration, depending on the character of the immediate tablet environment. Once a driving force is present which causes nitroglycerin to volatilize and leave the tablet, the process leading to the development of intertablet dose variation is set in motion. In an attempt to establish an equilibrium condition not only among the tablets but with the stuffing, the cap liner, and an imperfect vapor seal as well, the small amount of volatilized nitroglycerin encounters other tablets. The latter, due to differences in surface concentration of nitroglycerin, porosity, hardness, and proximity to the tablets losing the nitroglycerin, may very well act as partial condensers in the same manner as the packing in a distillation column. Thus, one sees the development of high and low content tablets. Many lots that are uniform when manufactured develop enough intertablet variation within a few months to fail the USP XVIII content uniformity test. This tendency toward failure seems to be an intrinsic property of molded tablets using present manufacturing methods. Our experience with this tablet indicates that stabilization can best be achieved by reformulation.

REFERENCES

(1) G. E. Busch and N. P. DePasquale, Amer. Heart J., 73, 842 (1966).

(2) D. Banes, J. Pharm. Sci., 57, 893(1968).

(3) B. A. Edelman, A. M. Contractor, and R. F. Shangraw, J. Amer. Pharm. Ass., NS11, 30(1971).

(4) H. W. Copelan, J. Amer. Med. Ass., 219, 176(1972).

(5) FDC Reports, FDC Reports Inc., Washington, D. C., Jan. 25, 1972, T & G-3.

(6) F. J. Bell, J. Pharm. Sci., 53, 752(1964).

ACKNOWLEDGMENTS AND ADDRESSES

Received May 26, 1972, from Parke, Davis & Co., Detroit, MI 48232

Accepted for publication August 3, 1972.

This work was possible only because of the help and support of many members of both the Analytical Development and the Analytical Testing groups at Parke, Davis & Co.

¹² Supplied by E. I. duPont de Nemours & Co., Inc., Wilmington Del.